Mechanical Simulation

Department
  • Master's Program Mechatronics
Course unit code
  • MECH-M-3-SVM-MSI-ILV
Number of ECTS credits allocated
  • 4.0
Name of lecturer(s)
  • Dr. techn. Falkner Franz-Josef
Mode of delivery
  • face-to-face
Recommended optional program components
  • none
Recommended or required reading
  • - Bathe, K.J.: Finite-Elemente-Methoden, Verlag Springer.
    - Braess, D.: Finite Elemente: Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie, Verlag Springer.
    - Großmann, C., Roos, H.G.: Numerik partieller Differentialgleichungen, Verlag Vieweg.
    - Kan, V.: Segal, Numerik partielle Differentialgleichungen für Ingenieure, Verlag Teubner.
    - Klein, B.: FEM: Grundlagen und Anwendungen der Finite-Element-Methode im Maschinen- und Fahrzeugbau, Verlag Vieweg.
    - Lapidus, L., Finder, G.: Numerical Solution of Partial Differential Equations in Science and Engineering, Verlag Wiley.
    - Law, A.M., Kelton, W.D.: Simulation Modelling and Analysis. Verlag Mc Graw Hill.
    - Rill, G., Schaeffer, T.: Grundlagen und Methodik der Mehrkörpersimulation.
    - Wriggers, P.: Nichtlineare Finite-Element-Methoden, Verlag Springer.
    - Zienkiewicz, O.C., Taylor, R.K.: The Finite Element Method: Basic Formulation and Linear Problems, 6. Auflage, Butterworth Heinemann.
    - Zienkiewicz, O.C., Taylor, R.K.: The Finite Element Method for Solid and Structural Mechanics, 6. Auflage, Butterworth Heinemann
Assessment methods and criteria
  • Exam, Project work
Level of course unit
  • Master
Year of study
  • Fall 2025
Semester when the course unit is delivered
  • 3
Language of instruction
  • English
Learning outcomes of the course unit
  • Students
    • are familiar with the properties and fields of application of structural components (beams, plates, shells) and are able to employ them to solve practical problems,
    • are capable of solving problems of structural mechanics involving several bodies in contact using finite element methods,
    • are capable of applying finite element methods to fatigue strength problems,
    • are familiar with the main numerical processes for calculating dynamic processes and their potential uses and can estimate computation time,
    • are able to solve simple multi-body problems numerically
Course contents
  • • Differential, variational and Galerkin formulations
    • Finite element methods
    • Discretization methods (FD, Galerkin, FEM)
    • FEM in mechanics (equilibrium in the volume element)
    • Application of FEM (cell quality, evaluation of system response, reporting)
    • Structural analysis (2D elements, coordinate systems, beam elements, locking)
    • Dynamic analysis (natural oscillation, forced oscillation, state-space, Newmark, transient analysis)
    • Nonlinear problems
Planned learning activities and teaching methods
  • The course comprises an interactive mix of lectures, discussions and individual and group work.
Work placement(s)
  • none

We use cookies on our website. Some of them are essential for the operation of the site, while others help us to improve this site and the user experience (tracking cookies). You can decide for yourself whether you want to allow cookies or not. Please note that if you reject them, you may not be able to use all the functionalities of the site.